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ABSTRACT

Wet and dehydrated dog radii were mounted in a cantilever configura-
tion and subjected to static lateral loads and to free and forced lateral vibrations.
The latter were induced by an electromechanical shaker (MB Electronics Model
C-10E) capable of generating sinusoidal oscillations with frequencies between 5 Hz
and 3000 Hz. For all types of loadings the response of the bones was determined
by measuring the temporal variation of the displacements of a discrete set of
points along the bone. To this end a set of four electro-optical trackers (Physitech
Models 39A and 440) were used which allowed for a contact-free sensing of the dis-
placement patterns. The limitation of the validity of a linear mathematical model
for the mechanical behavior of the bones was examined by varying the intensity of
the loadings. In reducing the experimental data to obtain the gross mechanical
properties of the specimens estimates of the effects of shear deformation, visco-
elastic damping, and natural twist of the principal axes of inertia were made. For
the flexural motions of dog radii these effects were found to be relatively small at
the lowest resonant frequency, but at higher frequencies they can not be disregarded.
If the viscoelasticity of the bones is modeled by introducing a complex effective
Young's modulus, one oljains as repsesentative results for a wet dog radius
Eeff = 2.1(1+ 0. 07i) x10 dynes 4m at 128 Hz and for the same bone after dehy-
dration Eeff = 2.2(1+ 0. 03i) x 10 1 dynes/cm 2 at 160 Hz. Dehydration reduces
the imaginary part of the effective Young's modulus and thus the viscoelastic damp-
ing. By measuring the bending vibration properties of "control" beams made of
polymethylmethacrylate it was possible to examine separately some of the effects
of twist and frequency dependence of the complex Young's modulus on the lateral
motion of beams.
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DETERMINATION OF MECHANICAL PROPERTIES OF EXCISED
DOG RADII FROM LATERAL VIBRATION EXPERIMENTS

INTRODUCTION

One approach to the noninvasive measurement of the mechanical
properties of bones is to determine their vibration and wave transmission charac-
teristics [1]. This approach presupposes however that we have a valid mathemati-
cal model which describes the dynamic behavior of whole bones in terms of their
mechanical and geometric properties. For example, in slender, homogeneous,
isotropic elastic beams a measurement of resonant frequencies for lateral oscilla-
tions provides information about the beam properties through the relation
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where L is the length, El the bending rigidity, and pA the mass per unit
length of the beam. The parameter Kn depends on the boundary conditions and
the order of the mode of vibration [2]. Since whole bones are nonslender, inhomo-
geneous, anisotropic and viscoelastic their resonant frequencies are not correctly
described by equation (1). The development of an appropriate mathematical descrip-
tion of lateral vibrations of whole bones can only be accomplished by a systematic
comparison of theoretical and experimental analyses. The purpose of this paper is
to provide some experimental data which can be used as a guideline in developing a
mathematical model for whole bone vibrations.

EXPERIMENTS AND EQUIPMENT

Wet and dehydrated dog radii mounted in a cantilever configuration
were subjected to static lateral loads and to free and forced lateral vibrations.
The dog radii used in the experiments varied in length from 17.5 cm to 19.4 cm
and were obtained from mongrel dogs of uncertain age. The bones were excised
immediately after sacrifice of the animals and were stripped of excess soft tissue.
To inhibit dehydration during excision and cleaning we applied periodically Ringer's
solution. The cleaned bone specimens were then stored in Ringer's solution at a
temperature of -20oC. Cantilever beam boundary conditions were ascertained by
casting rectangular epoxy resin caps over the distal (wrist) ends of the radii and
clamping the capped ends to a support. This boundary condition was chosen because
it can be readily simulated in the laboratory and yields comparatively low resonant
frequencies.

For all types of loadings the response of the bones was determined by
measuring the temporal variation of the displacements of a discrete set of points
along the bone. To this end a set of four electro-optical trackers were used
(Physitech Models 39A and 440) which allowed contact-free sensing of the displace-
ment patterns. The electro-optical trackers measure the motion of a target con-
sisting of a line of contrasting light intensity (a white-black interface). By illumi-
nating the bone from behind, the silhouette provided a natural target. Physically,
each tracking system consists of an optical head unit and a control unit. Figure 1
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shows the experimental arrangement with the optical axis of the trackers pointing
across the bone surface towards the illumination source. The principal of
operation of the optical trackers is shown in Figure 2. A lens on the optical head
unit focuses an image of the target onto a photoemissive surface which converts the
optical image into an electron image. The electrons are then accelerated toward
a small aperature in front of a photomultiplier tube. Simultaneously, current is
applied to a set of deflection coils which cause the electron image to sweep across
the aperature. When the line of contrasting intensity in the image crosses the
aperature the photomultiplier output current jumps and the control unit then samples
the deflection coil current. Since the position of the electron image during the
sweep is proportional to the deflection coil current the magnitude of this current
provides a measure of relative target displacement. The current sample is then
amplified and converted to a voltage proportional to the target displacement. Scan-
ning (displacement sampling) is done at a 35 KHz rate for the Model 440 trackers
and 50 KHz for the Model 39A's and the resolution and.field of view (minimum and
maximum measureable displacements) can be varied by using different lens combina-
tions. Calibration of the tracking systems was acheived by moving the optical heads
on a micrometer slide to record the output voltage vs. displacement.

Forced vibrations were induced by clamping the capped ends of the
dog radii to the table of an MB Electronics Model C-10E shaker system which is
capable of producing constant amplitude sinusoidal oscillations in the frequency
range from 5 Hz to 3000 Hz. The maximum force rating of the shaker is
340 kg-force. With the combined system of the shaker and electro-optical trackers
the displacements of both the table and bone could be determined in the frequency
range from 5 Hz to 1000 Hz. Above 1000 Hz the amplitude of the table motion was
too small to give a good signal to noise ratio using the optical trackers. The loading
for static bending was applied by suspending a weight pan from a station near the free
end of the bones. Free vibrations were produced by suspending a weight from the
free end of the cantilevered bone and severing the suspension cord.

The displacement signals were displayed on a Tektronix RM-565 dual
beam oscilloscope with a variable time delay feature. Forced vibration data was
read directly from the CRT display by recording, for selected stations along the
specimens, both the amplitude and phase of the motion relative to the shaker table
motion. The phase angle between the two motions was determined by recording the
corresponding delay time. For forced vibrations the excitation frequencies were
determined using a Computer Measurements Company 706B electronic counter. In
the static bending tests, the displacements were read directly from the oscilloscope
display and for free vibrations single sweep photography was used.

EFFECTS OF INITIAL TWIST AND VISCOELASTICITY IN MACHINED
"CONTROL" BEAMS

A mathematical description of the deformations of whole bones is com-
plicated by inhomogeneity, anisotropy and viscoelasticity. Furthermore, estimation
of the magnitude of each of these effects from experimental data for intact bones is
difficult because they cannot be readily identified individually. In order to examine
separately some of the effects of initial twist and viscoelasticity in vibrations of
beams we have measured the bending vibration properties of "control" beams made
of polymethylmethacrylate (pmm). This is a transparent plastic sold under the
commercial names of Plexiglas, Lucite and Perspex. Figures 3 and 4 show the
forced vibration response of an untwisted pmm cantilever beam in terms of an
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Figure 1. Forced vibration apparatus with (1. to r.) electro-
optical tracking heads, dog radius mounted on shaker
table and quartz-iodine lamp to provide an optical
target of bone surface.
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Figure 2. Principles of operation of the electro-optical tracking systems.
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amplitude ratio and a phase angle. If u(x, t) denotes the lateral displacement
the amplitude ratio is defined by

lu(x, t)ma
amplitude ratio =

lu(0, t)lmax

where x is directed along the longitudinal axis of the beam with its origin at the
clamped end. The phase angle is the difference in phase between motions at the
station x along the beam and the motion of the clamped end. Figure 3 shows the
amplitude ratio and phase relations for the station x/L = 0. 98 ( L is the length
of the beam) as functions of frequency. The first three resonant frequencies, i.e.
the frequencies at which maximum amplitudes are obtained, are 28, 182 and 520 Hz.
The spatial variations of the amplitude ratio and phase for these resonant frequen-
cies are shown in Figure 4. Note that the amplitude ratio distributions do not
actually represent the deformation pattern at a particular time because for different
stations the maximum displacement occurs at different times. For this pmm beam
the ratios of the second and third resonant frequencies to the first are 6. 5 and 18. 6
respectively. In an elastic cantilever beam whose resonant frequencies are given
by equation (1) the corresponding ratios are 6. 27 and 17. 55 respectively. The dis-
crepancy indicates that Young's modulus for the pmm beam used increases with fre-
quency. Before examining further the variations in Young's modulus with frequency
we shall first investigate the effects of initial twist on the resonant frequencies.

A beam has initial twist if the principal directions of the cross sections
vary when moving along the beam length. An examination of the effects of initial
twist is important for vibrations of whole bones because many bones can be expected
to have some initial twist. The response of an initially twisted pmm beam is shown
in Figures 5 and 6. This beam was constructed such that the rate of twist along the
beam was approximately constant and the total twist at the end was 100 degrees.
The cross section was rectangular with thickness h and width b such that the
ratio of principal moments of inertia was 12/I 1 = 2.25 . This ratio approximately
corresponds to the value for a dog radius. Figure 5 shows the amplitude ratio and
phase as a function of frequency for a station near the free end ( x/L = 0. 96) .
The beam was vibrated such that at the clamped end we had only lateral motion in
the principal direction for which the bending rigidity was lowest. The amplitude
ratios shown in Figures 5 and 6 correspond to the displacement components in the
direction of the support vibration. The arrows in Figure 5 denote the resonant fre-
quencies for an untwisted pmm beam with the same cross section, with f = 28,
182 and 520 Hz representing the first three natural frequencies for the direction
with the lower bending rigidity and f = 42, 275 and 780 Hz those for the stiffer
direction. Comparisons of these with the resonant peaks for the twisted beam show
that twist has a larger effect at higher frequencies. The lowest resonant frequen-
cies of both the twisted and untwisted beams were found to be essentially the same.
Figure 6 illustrates the spatial variation in the amplitude ratio and phase for the
resonant frequencies of 28, 192 and 560 Hz in the twisted pmm beam. The general
quality of the distributions is similar to the corresponding curves for the untwisted
beam however the amplitudes at the higher resonances are somewhat lower for the
twisted beam.

We have also determined the variations of Young's modulus with fre-
quency for a pmm beam and for a rectangular- strip of bone machined from a dog
radius. The method used is similar to that described by Bland and Lee [3]. For
steady state oscillations in a linear viscoelastic material it is convenient to express
the constitutive equation in terms of a complex Young.'s modulus which accounts for
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Figure 3. Amplitude ratio and phase angle for an untwisted
pmm beam as a function of frequency, x/L = 0. 98.
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the fact that in such materials the stresses and strains are generally out of phase.
Writing the complex elastic modulus as

E(w) = E (w)[1+i6(w) ]
we can determine Eo(w) and 6(w) in a convenient manner by varying the beam
length to obtain a range of resonant frequencies. According to Bland and Lee [3J
we have approximately

4 6c2

S = I 2 2 2 (2a)o I AL

4c 52

Kn A K2 A2

n L

AL = amplitude ratio for the free end at the resonant peaks

w = circular frequency

pA = mass per unit length

I = area moment of inertia of the cross section

cn , Kn are constants depending on the number of the mode of vibration:

vibration mode Kn  Cn

First 1. 875 0.734

Second 4.694 1.018

Third 7.854 0.999

The above equations used to calculate the complex modulus are valid for uniform
linearly viscoelastic cantilever beams if 6 < 1/2 and if shear deformations and
rotatory inertia effects are negligible.

Figure 7 shows the complex modulus vs. frequency as measured for
pmm. The points illustrated are the results obtained from our experiments, while the
dotted line depicts the modulus for pmm as measured by Koppelmann [4]. Differ-
ences between our measurements and those by Koppelmann may be due to actual
differences in the specimens tested. The real part of the elastic modulus for pmm
slowly increases with frequency while the ratio of the imaginary part to the real
part decreases with frequency.

The complex elastic modulus for a dehydrated bone strip is given in
Figure 8 as a function of frequency. The specimen was obtained from the central
portion of a dog radius and it was machined to have a rectangular cross section with
a width of 0. 43 cm and a thickness of 0. 21 cm. The length was varied between 3. 0
and 7. 5 cm by clamping the strip at different stations with the circles representing
measurements obtained when the distal end (wrist end) of the strip was clamped and
the triangles when the proximal end was fixed. Differences between the measure-
ments obtained by clamping opposite ends can be attributed to inhomogeneities in the
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specimen. The real part of the elastic modulus for the bone strip is relatively
independent of frequency while the ratio of the imaginary to the real part increases
with frequency. These results for the bone strip will later be compared with mea-
surements made on the whole bone prior to machining.

STATIC AND DYNAMIC DISPLACEMENT PATTERNS FOR EXCISED DOG RADII

Static Bending

Static deflections of excised dog radii were measured to allow for com-
parisons with the forced vibration response and to examine the importance of shear
deformations in whole bones. In Figure 9a the lateral displacement at a number of
stations is shown as a function of the lateral load. As before, the x axis is
directed along the longitudinal centerline of the bone with its origin at the clamped
end and' L denotes the distance from the clamped support to the free end of the
bone. The lateral loads inducing bending were applied near the free end at the sta-
tion x/L = 0. 98 . Anatomically the applied loading simulates in part a forward
extended front leg bearing weight. The data suggest that for the range of loadings
considered the displacement at all stations was a linear function of the applied load.
By plotting the slopes of the deflection vs. load lines as a function of x/L the
deformation shape defined by the circles in Figure 9b is obtained. The curve shown
in Figure 9b is the deformation shape for a uniform cantllever beam of the same
length as the bone, with a bending rigidity of EI=8. lxl10 dynes-cm 2 and an infinite
shearing rigidity. Since the curve fits the data points quite well the effects of
inhomogeneities and shear deformities appear to be quite small for static bending.

Free Vibration

Free vibrations of a dehydrated dog radius mounted as a cantilever
are shown in Figure 10. The bone was initially loaded with a 200 gm weight in the
same manner as was done for the static bending tests. The two displacement traces
shown in Figure 10 are for the free end of the bones, the lower horizontal trace
being the initial static deflection. The horizontal time scale is 10 msec per division
and each vertical division is 0. 010 cm displacement. Approximating the free vibra-
tion curve as an exponentially decaying sinusoidal oscillation, we have

u(L,t) = U e iwt

where w is complex, i.e.

w = 27Tf + iy

Then

u(L,t) = U e e2nift

The real part of the frequency can be obtained by measuring the average period of
the oscillations. We find f = 187 Hz. The attenuation coefficient y can be
calculated from

A
1 n

y Int -t Am n m

where An = A e - /n is the maximum amplitude at the time tn and Am that
for t = tm. his gives a value of y = 18 for the free vibration. While we can
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compute a complex modulus from f and y it is expected to be somewhat
different from that given by the forced vibration response since it corresponds to
a complex frequency. In steady state oscillations the frequency is real.

Forced Vibrations

Forced vibrations were excited in the dog radii in the same direction
as the static deflection patterns mentioned above. In these tests care was taken to
keep the amplitude of the motion small enough so that the amplitude of the bone
motion was a linear function of the clamped end displacement; the maximum shaker
displacement used was . 010 cm peak-to-peak. Nonlinear effects were most notice-
able at the first resonant frequency where the amplitude of the free end displace-
ment is very large compared to the clamped end motion. The amplitude ratio and
phase angle for a dehydrated dog radius are shown as a function of frequency in
Figure 11. The bone used here is the same as that for which the static bending and
free vibration results were shown. We notice strong resonances at 189 Hz and
1000 Hz. The ratio of the second to first resonant frequency is 5. 3, and as such
deviates from the classical value of 6. 27 for a uniform slender cantilever beam.
The first resonant frequency of 189 Hz compares favorably with the real part of
the frequency found for free vibrations. Between the two large resonance peaks
there is a small intermediate peak at 275 Hz and at this frequency the phase angle
curve shows a depression. This intermediate peak appears to be due to the twist
in the dog radius since the response of the twisted pmm beam shown in Figure 5
exhibits similar features. If the bone is rotated 90 degrees and vibrated, a strong
resonance occurs at 275 Hz. The spatial distribution of the response at the first
two resonant frequencies is given in Figure 12. Again it should be noted that the
amplitude ratio distribution does not represent the displacement shape at a par-
ticular time because maximum amplitudes for different stations occur at different
times. From the first resonant frequency of f = 189 Hz and the amplitude ratio
for the free end of A = 85 we can estimate an effective Young's modulus for the
whole bone using equaions (2). At this point it is important to stress that the effec-
tive modulus obtained in this manner is an average property for the whole bone since
it is based on uniform beam theory. The inhomogeneities in the bone render the
analysis not strictly correct. For the dog radius tested we found approximately

pA = 1. 59 gm/cm

I = 0.021 cm 4

L = 14.5 cm

and

Eeff = 3. 8(1+0. 02i) x 1011 dynes/cm2

In the static bending test we obtained an effective bending rigidity of
(EI)eff = 8.1 x109 dynes/cm2 . Uing the above value of I, the static bending test
gives a value of Eeff = 3. 86x 10 dynes/cm2  for the effective Young's modulus.
The mass per unit length used in the above calculations was obtained by weighing
the whole bone and dividing by the length and hence represents an average for the
whole bone.

We previously showed the results obtained for the complex modulus as
a function of frequency for a strip of bone machined from the central portion of a dog
radius. Prior to the machining operation two sets of resonant frequency measure-
ments were done on the specimen. First, the whole bone was tested and then a
shortened version of the same bone with a portion of the free end cut off. The results
are summarized in the following table.
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Length First Amplitude Mass/Length E x10 -  dynes 6Resonance Ratio o 2
L - cm fl - Hz AL pA - gm/cm cm

16.4 158 60 1.92 2.21 .026
13.5 240 54 1.91 2.25 .029

The above values for the elastic modulus data are slightly higher than those obtained
for the machined dehydrated strip.

Forced vibration tests were also done on dog radii preserved in Ring-
er's solution. A typical amplitude ratio of such a wet bone is shown in Figure 13.
The corresponding resonant frequencies were found to be 128 Hz and 765 Hz. After
dehydration these frequencies increased to 158 and 996 Hz respectively. This
increase is mainly due to a reduction in the mass per unit length caused by dehydra-
tion. The effective Young's modulus, calculated from the resonant f equency and
amplitude ratio data for the wet sample, is Eeff = 2. 1(1+ 0. 07i)x 10 dynes/cm2

at 128 Hz. For this specinen, when dehydrated, we found an effective modulus of
Eeff = 2.2(1+0.03i) x 10 dynes/cm . Dehydration reduces the imaginary part
of the effective Young's modulus and thus the viscoelastic damping.

DISCUSSION AND CONCLUSIONS

Our experimental data indicate that the effects of viscoelastic damping
and natural twist of the principal axes of inertia on the resonant frequencies are
small; the amplitude ratio and phase distributions, however, are noticeably affected.
While the influence of shear on the lowest natural frequency also appears to be small
it se-ems to produce, in some cases, a second eigenfrequency which is as much as
20% below the values anticipated on the basis of classical theory. If this discrep-
ancy is exclusively due to shear, the bone material in such cases is highly aniso-
tropic and has a shear modulus which is of the order E/30. An elastic modulus
calculated from the first resonance data for forced vibration, using uniform beam
theory, agrees well with the static bending results. Since the.experimental data
shows evidence of both physical and geometric nonuniformities, the calculated elas-
tic moduli are to be interpreted as effective moduli which represent weighted aver-
ages for the whole bone.
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